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0-1 PROGRtMMINC FOR COLUMN-CHAINED MATRICES

UNDER VECTOR PARTIAL ORDERING

Abstract

This paper presents a technique for solving a set of 0-1 pro-

gramming problems where the columns can be permuted so that all row

coefficients are monotone increasing. Such matrices are column-chained

under vector partial ordering. The technique is based on equivalence

classes that exist on the unit hypercube and for the set of problems des-

cribed, the approach reduces the set of possible solutions to a

subset in which the optimal must lie. An example is presented. I
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1. PRELIMINARIES

We wish to consider a special class of the following 0-1 integer

programming problem:

min cx

st Ax>h (1)
x=~ 0,I1

where A is an mxn matrix.

Definition 1: A matrix A is a column-chained matrix if the columns of

A can be linearly ordered under a relationship R.

It should be observed that the property of being a column-chained

is dependent on the particular relationship R. Thus, if R is lexico-

graphic ordering, then any matrix A is a column-chained matrix. The

ordering relationship that we shalL be concerned with is the standard vector

npartial ordering in R , i.e., a < b if a < b. for i = l,...'n. If strict

inequality must hold in at least one component we write a < b. The following

Leautia exhibits the properties tnat will be necessary for our discussion.

Lemma 1: A matrix A is a column-chained matrixt under vector partial

ordering if and only if there exists a permutation P (pit

p2 ,...,pn) of the columns of A such that

a <a. for j = l!...n-l and i = l,...,n.
1pJ - lPj.l

Proof: This is a direct consequence of a linear ordered set and the

ordering relationship.

Column-chained matrices under partial ordering may arise in practical

knapsack or capital budgeting problems. For example, by letting x.= 1 if we

decide to adopt project i, and 0 if not, the column-chained property re-

flects the concept that if project i uses more of one resource than project j,



project i uses more of all the resources than j. For other techniques for

solving general 0-1 knapsack and capital bud-cting prolems see [21 and [3].

For sake of simplicity, we sdiail. zssume that the matrix (1) for our

problem (1) is ordered according to Lemma 1, i.e., P = (1,2,...,n).

The solution technique developed herein will depend on equivalence

classes for constraints in 0-1 problems. The underlying theory can be

found in Bowman [1]. Those results that are of concern to this paper

are restated for completeness; however, the proofs are not included.

2. PROPERTIES OF CONSTRAINT EQUIVALENCE CLASSES

1. We say that two constraints ax > b and a'x > b' are in the same

equivalenct class E if the set of feasible 0-1 points are the same

for ax > b and a'x > b'.
"3n-I on-I

2. There are (2.3 - 2 -l) such equivalence classes.

3. The 0-1 vertices can be associated II. pairs ; and -6 where i +I.

The implication being if 6. = -1 then x.= 1 and if Z.= -1, x. 0. This
L 3. 0. Ti

transformation is accomplished by x = 1/2e+ 1/23 where e = (ll,...,I).

In order to provide uniqueness of identification we require 6i 0-

and if Z8. = 0 then 6 -1.

4. With every 8 pair can be uniquely identified with a vector p (pl,...,

pk k = [n/2](fx] greatest integer <x) as follows.

Let k (8) be the number of negative elements of 6 then p(S)

has the properties:

a) 0 <p.<p -

b) if p 0 then p < Pi l

c) p1  p2 = "'" Pk-k(9) = 0

d) 6. = -1 if and only if p = i for some j.
1 j

Thus, the vector p(g) identifies the negative elements of 6.

'4
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5. If the constraint P.z > b is such that 0 <a 1 <a 2  ,,. <a then

there exists a function H(p, v) on p and the point v = 4-j a, where

= b - (1/2)ae, such that if b' > 0 then

H(p,v) _> H(p',v) p _< p' and if b"_< 0 then

H(pv) < H(p',v) p < p'; that is, H is monotone ever the

vector partial ordering.

The values of H are calculated as follows:

I( if v•iV >-a
i i 2

n0if 7,iV i = i and av < b
ni 2

H(p(g),v) = 0 if - a < Tiv. <-
2 fi i 2

o if 1:6.v. = - and av < b'i 2

-1 if T"6v =- and av>bYii 2

-1 if 7,6v <-
i i 2

6. Since H(p,v) is monotone over the partial ordering p, we need know

only the following sets to know H(p,v). If b' < 0

i+ = PIHI(pv) = 1, and H(p',v) = 0, or -1 for p' < p]

and P =- =plH(pv) = -1 and H(p',v) = 0, or 1, p' > p)

and if b' > 0 then

"+ = (plH(pv) = I and H(p',v) 0 or -1 p ' > p]

P" = (pH(p~v) = -1 and H(p',v) = 0, or *1, p' <pl.

An algorithm for calculating the sets P+ and P" is presented in [li.

7. The values of H(pv) and consequently the sets P and P classify 6 and -6

and their associated x values into feasible and infeasible sets as follows:

a) x = 1/2(e + t) and x = 1/2(e - ;) are both feasible to ax > b if

and only if b' < 0 and H(p(5),v) = 0;that is, b' < 0 ana for some

p' E P- and some p" P, p+ _<p(6j < p"

I_.
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b) x = 1/2(e + 6) is feasible and x 1/2(e - •) is infeasible if

and only if either

1) b' > 0 and H(p(g),v) = 1; that is, b' > 0 and for some

ps E i+' p(;) :< 4'"

or

2) b' < 0 and H(p(O),v) -1; that is, b' < 0 and for some

p' p P-, p(s) < p'.

c) x 1/2(e + 6) is infeasible and x = 1/2(e - 6) is feasible

if and only if either

1) b' > 0 and H(p()),v) -1; that is, b' > 0 amd for some

P' E P-, p(8) Ž
or

2) b' < 0 and H(p( 6 ), v) 1; that is, b' < 0 and for some

d) 1/2to ,-.d -1/29 are both in.Feasible if and only if b' > 0 and

H(p()),v) = 0; that is, b' > 0 and for some p E P and

p P'<(6) <p'.

4
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3. EQUIVALENCE CIASSES ON COLUMN-CHAINED MATRICES

When A is a column-chained matrix under vector partial ordering

we note that properties 4 and 5 along with Lemma I implies that the I

functions Hi(p,v) associated with each constraint are monotone for the

same vectors p; that is, there is no need to permute the xi to satisfyi!

a, <a 2 2< ... _< an for any constraint. Consequently, each constraint

associates the points 1/2(e + ;) with exactly the same p. It should

be noted that if the matrix is not c6lumn-chained (under vector partial

ordering) then the points 1/2(e + 3) are not associated with the same

vector p for each constraint.

In order to combine the relationships on the vectors p we need to

introduce several concepts.

Definition 2: The eimax (pomin) is the operation that chooses the set

of maximum (minimum) elements from a partially ordered

set.

Of course, since the set is only partially ordered the pomax

(pomin) may not be a unique element but, is rather a set of elements.

For example, using this notation we can describe.the Sets P+ and P

(from property 6) as -

={pominnpfH(psv) = -4] if b' > 0.

pomax{plR(p,v) = -1] if b' < 0.

+ =pominWplH(pv) = 1] if b' <0

LPonmaxfpIH(p,v) = 1) if b' > 0.

Definition 3: A descriptive set, of Ax > b is a set of sets.that com-

pletely classify all 0,1 points of Ax > b into feasible

and infeasible.

L
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For example, if Ax > b consists of a single constraint then the sets

P+ and P- form a descriptive set.

We shall now develop a descriptive set for the constraints of (1)

when A is column-chained using equivalence class Property 6. We let

(Pi3 Pi} be the sets of Property 7 for eonstraint i, i =

We define index sets I = (ijb' < 03 and J = [ijb! > 03. To facilitate

the following development, we define for each constraint i E I

01-
PiO = pomax[pjlH(p,v) = 0 or -1)

and
P0- = pominfpjH(pv) = 0 or +11

L+

These sets are direct by-products of the algorithm to calculate P i and

iiP•presented in [1] and therefore, involvenoadtnlcmpains

In order to describe the union of the classifications of a given p, we

make the following set definition:

0+ 0+Let =pominfpip E U P]
iEI

0- 0w=pomax~pip E U POI
iEI

+ = pomintpjp E= U P•} , and

iEJ

Qj= pomax(plp E U e:3 •
iEJ

These sets then classify the 0.1 points according to the following theorem.

Theorem I: For the points 1/2(e + 8) and 1/2(e - 8) we have

a) l/2(e + 6) is feasible if and only if p(6) _ p' for

0+ +some p' E Q and p(6) <pM for some D" EQS;
I j

b) 1/2(e - 8) is feasible if and only if p(6,R > p' for

0-
some p' E Q and p(8) > p" for some p" EQ.Q..

Proof: We shall only prove pu-. (a) since the proof for (b) is similar.

Assume l/2(e + 8) is feasible then for all i E I we have Hi(P(6),v) = -1

or 0.by Property 7. And, by the monotonicity of H(-) (Property 5) we have



that H.(p(6),v) = -1 or 0 for all i E I if and only if p(8) =< p' for some
i

ps E Q,0. Similarly, for all i E J we must have Hi(p(8),v) +1 and again

this is true if and only if j(8) _< p" for some p" E Q Now assume

p(6) =< p' for some p' E Q0 and p(6) _< p" for some p" E Q+ by monotonicity

H-(p(8)) = -1 or 0 for all i E I and H.(p(6)) =+1 for all i E J. By
ip i

property 7 this implies 1/2(e + 6) is feasible for all constraints. The

proof of (b) is similar.

Corollary 1.1: The set of sets 0QI4,Q- + and Q+1 is a descriptive

+ - +Q a

set.

Proof: Obvious.

Corollary 1.2: The points 1/2(e + 8) and. 1/2(e - 8). are both feasible

if and only if (i.e., J ).

Proof: Assume both points are feasible and Q and Q are not null

then p" < p(6) < p' where p' EQ3 and p" E Q+; however, by the monotoni-

city of H(*) we have p" > pt a contradiction.

Having thus been able to classify the feasible and infeasible points

of Ax > b we now address the problem of optimizing cx over the feasible

points.

4. OPTIMIZATION OVER THE DESCRIPTIVE SEES

Problem (1) can .Led as min cx over the feasible points given

by Theorem 1. We assume that the matrix (;) is column-chained under

partial ordering. Now since we are interested in minimization, we want

a such that (cx <Z 0 , Ax > b) has no 0,1 solution while (cx . Z00

0Ax > b) has at least one solution. This Z is the minimum value. Our

0
approach will be to find the value of Z by examining the equivalence

classes of cx < Z. In order to do this we note that cx < Z is equivalent

to -cx >? -Z and substitutinp X = e !- x. jweaVi•iv.y.... ......

• ! • • ,•A
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cx' > ce - Z. (2)

Now since (A) is column-chained we have that c... <C so that

elements of p(6) refer to the same pairs l12(e + 6) as the constraints. Now

let [P+j, Pý] be the sets of Property 6 associated with (2). We now
7w

need to relate the feasibility information in these sets back to problem 1.

Since x' = e - x and the inferences from the sets ( P Z

are on x' = 1/2(e + 8), we can translate these to the variable x by simple

substitution thus,

e - 1/2(e +_) x

or x = 1/2(e+ •). (3)

Equation (3) says that the inferences from property 7 are just the

reverse for equation (2). Thus, for example, Property 7b becomes

x = 1/2(e -8) is feasible to cx <Z and x = 112(e + 6) is

infeasible to cx < Z if and only if either

1) Z' = 1/2 ce - Z > 0 and H(p(6),v) = 1

or

2) Z' < 0 and H(p(;),v) = -1

As a consequence we have that

x = 1/2(e - 6) is feasible when either Z' > 0 and H(p,v) = +1

or Z' < 0 and H(p,v) = 0 or -1 and that

x = 1/2(e + 8) is feasible when either Z' > 0 and H(p,v) = -1

or Z' < 0 and H(p,v) = 0 or +1.

We can thus, summarize the feasible set for a fixed upper bound Z on the

objective function.
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Lemma 2: The set of feasible zero-one solutioas to £cx < Z, Ax > blis:

a) x = 1/2(e + 6) is feasible if a'd only if

1) p(8) . p" for soqie p'E Q4

2) p(8) < p" for p'.E Q J;

and 3) (a) if Z' >0, p(7) Žp* for somq p* E Pz

(b) if Z' < 0, p(Z) > p* for some p* E P'i-

b) x 11/2(e - 8) is feasible "if' and only if '

,~0-.
1) p(W) p' for some p' E Q

2) p(9) > p" for some 'p" E

and 3) (a) if Z' > 0, p(-) _p* for7sowe p*E . .

( if Z -<Oi p(6) <'p* for some p* E P9•

Proof: Conditions (1) and (2) for each, part comed from Theorem 1, Con-

dition 3 is just a restatement of the discussion prior to the lemm.

It is this lemma that is the basis for our analysis of the optimal
I -

solution. In order to obtain the optimal value we define the sets
1 I

+0

- om.tipQU 1i+ PoinO' EQ U Q+]

• "omaxfpipE Q U Q

We observe that x = 1/2(e;+ 8) is feasible td Ax > b if and only if

p(3)- p forSsome p E e .and that x - I/2(e . 6) is feasible if and only

if p ~ >p for some p E Z.

1 +Theorem 2: Let cx = min(cxlx = 1/2(e + 8) and p(6) E Z ond

cx = min-cxlx i 1/2(e -) and p(i) E Z'] then "the optimal

0 1 2)
solution to (1) is cx = min(cx ,cx

0 0Proof: Let Z= cx as defined above. Consider the set of feasible solu-
tions to (cx<'Z0 - e and Ax >b, for s >0. Now + 2(e+

A-, •

-I
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is infeasible to cx <Z -0 by definition of ZO. Consequently, if

(Z0 - e)' >0 then Hz(p') = + I or 0 and for any p <p' we have Hz(p) = + I or 0.

Since the only feasible p associated with x = 1/2(e + 8) are p < p'

for some p' E Z, there are no points x = 1/2(e + 8) that are feasible to

Ax>b and cx < Z0 - e. On the other hand if (Z0 - e)' <0 then I (pt) = -i

and for any p < p' HZ(p)= -1 again implying that there are no points of

the form x = 1/2(e + 8) that are feasible to both Ax > b and cx <Z0 -0 .

The proof on Z" is similar. Thus, there are no solutions to (cx <Z -0 ,

Ax > b] for any e > 0 and there exists one solution, x when e = 0.

Thus, x0 is the optimum •:lution, and the theorem is proved.

The implication of Theorem 2 is that by the use of equivalence

classes on constraints one can reduce problem (1) (when (;) is column-

chained under partial ordering ) to the search for an optimal solution

over two sets e and Z_.

Corollary 2.1,: For any : such that 0 < c 1 < c 2 . ... <c the optimal

lies in the set Z" U Z.

SThis corollary emphasizes the implications of the ordering that as

long as we maintain the same constraint set and the cost function changes

but preserves the column-chained property of (A) we need only investi-

gate the points associated with Z U Z.

We now illustrate this technique with an example. __

Example:

The following knapsack problem is taken from Truath and Woolsey

[4].

max 20x1 + 18xI + 17x' + 15x- + 15i; + lx( +5-+3x'+ +x0

30x + 25x+ 20x + 8x+ 17* + '+ 5x+ 2x'+ x;+ xj loo.

4



-1i- Ž1

In order to make this problem in column-chained format, we take the

permutation (10,9,8,7,6,5,4,3,2,1). In addition, we must reverse the

sign of the inequality and then substitute x' = e - x to get positive

coefficients. We are left with

min xI+ x 2 + 3x 3 + 5x4 + 10x 5 + 15 6 + 15x 7 + 17x 8 + 18x9 + 20x1 0 -l 10 5

s.t. x + x2+ 2x + 5x4 + llx 17 +8 + 20 + 25x+ + 30xlO +30

We note that b = b - (!/2)ae = 30 - 65 = -35 is negative. Using the

algorithm in [i] we have

P" = [(0,0,0,5,7),(0,0,2,5,6),(0,1,2,3,9),(1,2,3,4,8)),

Pe= ((0,0,0,0,10),(0,0,0,4,9),(0,0,0,5,8),(0,0,0,6,7),(0,0,L,5,7),

(0,-.03 #5,6), (0,1,2,5,6) ]

Pot= [1,7,8,9,10]

0+

Now points of the form x = I/2(e + 8) are feasible for p .< (1,7,8,9,10)

since PO1 = (1,7,8,9,10). Note that since n is even (1,7,8,9,1O):is'the

longest P vector and therefore, all x = 1/2(e + 6) are feasible. Sim-

0-
ilarly x= 1/2(e - 8) is feasible for any p > p' where-p' E P . There-

fore, we have += Po+ and Z" = P . The table below gives the various

values of the objective function for the sets Z and Z A

AL. . . • •. | . i • ' i II | I I I i
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Set P x's=1 cx

1,7,8,9,10 2,3,4,5,6 34

Z 0,0,0,0,10 10 20

0,0,0,4,9 4,9 23

0,0,0,5,8 5,8 27

0,0,0,6,7 6,7 30

0,0,1,5,7 1,5,7 26

0,0,3,5,6 3,5,6 28

0,1,2,5,6 1,2,5,6 27

Examining the values of cx we have Z 20 and x° = (0,0,0,0,0,0,0,0,0,1).

Translating back to the original problem, we have the maximizing solu-

tion as x' = (0,lv1,i,1,lll,1,1) with a maximum value of 85. We further

note that for any c such that 0 cl <c 2 < ... <ca the optimal solution

for the constraint above will be one of the eight points in U U Z-.

ON,-I
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5, 2XTENSIONS TO REVERSED INEQ1JA!JTIHS

In the discussion of the optimization procedures we noted that

reversing the direction of the inequality had the effect of reversing

the feasibility inferences on +8 to -6 and from -t to +6 under property

7. Consequently, if our problem is of the form

min cx

s.t. A x b

A2x < b2 (4)

x.= 0,1

rcA
where AL is a column-chained matrix under partial ordering then

[A2
A2x < b2 can be treated in the same manner as the objective

function in section 4. Consequently, an extension of Lemma 2 provides

the set of feasible solutions. First, we define sets

Qi pomin~pip E U P

I:p np Pi I
1 iEI

0- =E 0-
Q pomaxfplp E U Pi

=pominfpjp E U Pt
1 iEJl

=J pomax[plp E U iP)
I iEJ 1

where the sets I = {ilbj .< 01, J, =:ilblb > 01 and the sets of Q are

those defined in section 3 for the constraints Alx > bI. In a similar 4

manner for constraints AYx <b we define:

Q pomin(pZp ZU P u
12 iEI2

- • •- " ; ; -
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= pomax plp E u P°0

32 iEJ2 2

= pminaxfpp E U P3 a

2 iE E 2

where the sets 12 = {iIl/2aie - b2i < 0) and J 2  =ill/2aie b b2i > 0).

By arguments similar to that of Section 4 we have

Lemma 3: The set of feasible zero-one solutions to [Alx > b, and A < b is

a) x = 1/2(e + 6) is feasible if and only if

1) p(9) --<P' for some p' EQ+

2) p(t) _< p" for some p" E +

3) p(;) > p* for some p* EQ

and 4) p(C) > p**for some p**E

2

b) x = l/2(e - 8) is feasible if and only if

1) p(&) >p' for some p' E 0"

2) p(6) > p" for some p" E

3) p(3). p* for some p* E

and 4) p(g)--- p**for some p**E
(2

We accordingly modify the definitions of Z and Z" to include the

implications of Lemma 3. Thus, we have

Z+ = Gin[ iP O + QZt pominifpj p E>Q % pL+*, and p p** for some

1 1
-0-p* EQ2 and p** E Q ) and
J 2 12

Z =pomax[(PI PE Q U Q , p _5 p* and p p** for some

p* Q+andt*).* E Q01I
2 2
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To optimize the new problem we now apply Theorem 2 to the above sets.

Again, the equivalence classes have reduced the solution of (4)

to a search over the two sets Z+ and Z-.

I

!I
I

4
I
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